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~ Contribut ions to solving initial boundary value prob lems for partial
differential equations have been made by applying finite-difference methods
to solve seismic wave propagation problems . Very little has been done in
the area of underwater acoustic wave propagation problems , although a set
of properly developed numerical methods could very well solve these prob lems
effectively. These numerical methods can solve not only range-dependent
problems but also can handle irregular boundaries with arbitrary boundary
conditions. In this report, as a start, two accurate general purpose 
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approaches are presented for the solution of variable coefficient parabolic
wave equations.

In a finite-difference approach, techniques are derived from both the
conventional explicit and implicit schemes, and the associated convergence
theory is thoroughly analyzed. The techniques are found to be general purpose
and to provide reasonable accuracy.

In an ordinary differential equation approach the parabolic equation is
treated as a system of equations in which the second partial derivative with
respect to the space variable is discretized by means of a second order central
difference (also known as the Method of Lines). Nonlinear multistep (NLMS) and
linear multistep (L).G) methods are used as predictor-and-corrector for solving
this system. A built-in variable step-size technique gives the desired accuracy
The theory with regard to consistency, stability, and convergence has been very d
well developed for both the NLMS and LMS methods, thus ensuring the convergence
of this procedure.

A practical treatment of irregular boundaries is described with an
illustrative example, and a selected set of experimental numerical results are

- 

included to demonstrate the validity of these approaches.
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NUMERICAL SOLUTIONS OF UNDERWATER ACOU STIC
WAVE PROPAGAT ION PROBLEMS

0

1 • INTRODUCTION

Significant contributions to solving seismic wave propagation problems
have been made by applying finite difference (PD ) methods; ’~~ however , lit-
tle has been done in applying PD methods to the solution of underwater acous-
tic wave propagation problems. Some literature4 6  exists , but further
improvement and efficient applications of PD methods to underwater acoustic
wave propagation problems are required. The basic problems involved in the
app lication of PD methods — speed , accu racy , and memory capacity —— were
never thoroughly ana lyzed. A study of the efficiency of PD methods in
solving general underwater acoustic wave propagation problems was never
performed . In addition , the theory involved in the PD methods (which offers
important information regarding convergence and error control) was completely
neglected.

PD methods are a general purpose scheme and have very few restric—
tions .7 9  As a start, we will search for efficient solutions of parabolic
wave equations . In this report we will:

1. Formulate both explicit and implicit PD schemes for variable coef-
ficient parabolic equations and examine whether a more efficient PD
method can be developed for underwater acoustic wave propagation

• problems ,

2. Discuss the theory of our PD development and estimate the error,

3. Demonstrate the validity of our PD techniques.

In addition to the PD approach, an ordinary differential equation (ODE)
approach was taken and was found reasonably effective for handling parabolic
equations. Numerical analysts have frequently remarked that PD methods would
be enhanced if a variable step length could be adopted to solve partial dif-
ferential equations . The ODE approach , used in conjunction with the PD ap-
proach , certainly offers this advantage . Our method of attack is to dii -
cret ize the second partial derivative wi th respect to space var iables into PD
representations and then to transform the whole p arabolic equation into a
system of ODEs. The advantage of using thi s approach is that the theory of

‘ numerical solutions of ODEs is very well developed and powerful computer
software exists. To gain speed while maintaining accuracy , we incorporate a
variable s tep—size technique with nonlinear multistep (NLMS) and linear
multi a tep ( LM$ ) methods to handle th . automatic step—size adjustment. From
test resul ts obtai ned to date, we find that the ODE approach may turn out
to be the most desirable.

In addition to the PD material, we will also

_ _ _ _
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4. Dis cuss the f ormulation of ODE solutions and state the well devel-
oped theory,

5. Describe how to automatically adjust the step size by means of the
variable step—size technique.

Prior to the discussion of these numerical approaches, a section addresses
some of the theoretical background. Af ter the descriptions of these
approaches , the relative merits and disadvantages are discussed . Finally, a
set of test results is given to demonstrate the validity of our approaches.
The accurate solution of parabolic test examp les numerically disclose how
well the p arabolic equation provides a solution of the sound propagation
problem. A special section presents a fresh , general treatment of irregular
bottom descriptions with arbitrary boundary conditions. Some conclusions are
provided

The experimental programs are written in ANSI FORTRAN language and have
been checked out on the Center ’s PDP 11/70 computer. Since these programs
are not yet finalized , a listing is omitted. A comprehensive document
describing the computer model will be provided separately. The theoretical
discretization errors are given in this report. Since computationa l errors
are heavily involved, the total error analysis will be presented in the corn— -

puter model documentation.

2

4
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2. THEORETICAL BACI(CROUND

We begin with a cylindrically synmietric acoustic wave equation in cylin-
drical coordinates:

• + + + k~n
2(r,z)p — 0 , (2—1)

where p is the acoustic pressure, k0 is the reference wave number, n(r,z)
is the index of refraction , and r is the range variable. Let p — u(r,z)v(r)
where v (r) is strongly dependent on r, but u(r,z) is only weakly dependent
on r.

By substituting p — uv into equation (2—1), rearranging the terms, and
using k2 as a separation constant, we obtain the following reflected field
and tragsmitted field parabolic wave equations:

v +!~~ + k 2 v’. O (2—2)rr r r o

U + u~~ + (
~ 

+ 
~~ 

+ k~ (n 2—1 ) u — 0. (2—3)

After we introduce the far-field approximation (k0r >> 1), the exact solu-
tion of equation (2—2) is known:

- 
v(r) H~~~(k r) ei~~o

r - ~~ . ( 2—4)

Using equation (2—4) to eliminate v from equation (2—3), we obtain

U + u~~ + 2ik u + k2(n2—l)u 0. (2—5)

If we assume that inhomogeneities vary slowly with range, the reflected
field can be neglected , which leads to the following parabolic wave equation:

ik (tt 2~ l)
2 U + U . (2—6 )

Performing parabolic approximat ions to the reduced wave equation will result
in various slightly different forms .2 ’5’6 ’’° We choose to deal with equa—
tion (2—6 ) because it is comeonly recognized in the underwater acoustics
comeunity, and existing PB (parabolic equation) models , such as the split—
step 11 , are directed toward the solution of equation (2—6).

3

4
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Note that in the shallow water environment or wherever bottom interac—
tion is important , the exact boundary condition must be satisfied; therefore ,
more general purpose methods are sought for the solution of equation (2—6). -
Existing methods using the fast Fourier transformation (FPT) are inappropri-
ate for such problems because these methods reflect the entire medium across
the surface; however, below the physical ocean, an absorbing layer is intro—
duced, permitting the infinite transforms to be truncated , so that the FYT
becomes applicable. The numerical ODE and the PD approaches are advantageous
because they do not introduce an artificial. bottom. 

*-
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3. NUMERI CAL SOLUTION S

3.1 FINITE D IFFE REN CE APPROACH

3.1.1 Pormi.ilation

We consider

u a(k
0,r,

z)u + b(k ,r,z)u — Lu. (3—1)

Let D be the PD operator , and

~~ 
be the central—difference operator in the z—direction .

D and 5 z are related by

D 1’1
~~~ sin~~~t .

Where h ~z , we use k — Ca r .  Therefore,

D2 _ i ( l _ f 6~~ +~~5~~~~
_ . . .) . (3-2)

We choose to write

D2 - [i - p(k,h)) . (3-3)

p(k,h) is a parameter to be determined such that the choice of p(k,h) will
minimize the initial local discretization error for implicit schemes.

Further, we assume that p(k,h) ~ 1. If p(k,h) — 1, equation (3—1)
reduces to u~ — au , which is trivial . In fact , we will demonstrate that

p (k ,h) — 0 gives the Crank—Nicolson formula ,
p(k,h) — h2/6k gives the Doug las formula.

We will make an attempt to find a p(k ,h) such that the order of the error is
the smallest , if possible.

3.1.1.1 Explicit Methods. We star t with the formulation of explicit
methods . Using the Tay lor expansion, we can obtain a two-level scheme for
equation (3— 1) :

u(r  + ~ r ,z) (i + 4— + 4j . k
2 

+ . . .)ui r,z~ — etc 
~~ u(r ,z ) .

(3 4)

5

4 
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If we let z — mh, r nk , and u(r,z) — u(nk ,inh) * u~, then equation (3—4) can

represent an explicit scheme: -

• n+1 k~~— n
U e oru .• m m

To solve equation (3—1), we could use equation (3—5 ) and retain only the
second order difference; the explicit formula becomes

n+l 
— (1 + k ~ ~~~ (1 + ak + ~ ~2 ‘~~~fl 

• (3—6)
m ~~ ,m v h2 z , r n

In general , we drop the superscripts and subscripts of a and b f or econ-
omy in writing; however, in the critical places, we will use the indexes to
make our formulas clearly readable . Using the second order central differ-

ence for , we find thatz

u~~
1 — (1 + ak)u~ + 

~j  k ( u .,.1 
— 2u + . (3—7)

If we write 1 + ak ~~~~, ~~~ k — 8~, we can express equation (3—7) in a matrix

form:

/url\ /n
2B B i o o . . . 

o\ fu
~

\ 

siu
n

l•1
2 

B 2 a2 282 82 0 . . . 0 U
2 

0

. a . . + .

\~
+ 
1/ \ 0 0 . B am 28~~ 

~~~ / 

B~ u~~

3.1.1.2 Implicit Methods. To pursue the formulation of implicit meth-
ods , we USC

e ~~~~ u ’1 
~~~~~ u~ . (3 9)

6
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To solve equation (3—1), we u e

[i 
— ~k(a + bD 2

)] ~~~~ — + ~ict a + bD2)] u~. (3—10)

Again, a second order central difference is used for D2 in equation (3—10);
we obtain

- ~ka - 
~~~~~~~~ 

(l_P(k ,h))]!u~~
1 

af i + fica + ~kb {~~~ 
(l_P(k~h))]Ju~

(3—il)

Simplif ying the above, we find that

LHS [i — ~ka + bs(l_P)] uW~ — 
~L
bs (1

~
P) ~~~~~~ + (3—12)

RH: — + ~lca 
_ bs(1_P)] u~ +~~bs(1—P) ~~~~~~~ + ~~~~ (3—13)

where s =

If we write -

a = 1 — ~ka, 
• B = bs(i—P), p = P(k,h), i = 1 + ~ ka

x xr~+1 a + B~~
1 1 — 1ka~~

1 
+ b’~~

1 s ( i—P),m m m m 2 m m

y a a - a 1 + ~-ka~ 
- b~ s(1-Q),m m m m 2 m m

and equate both sides (LHS BBS), we find that

1 n+1 n+1 /n+1 on+1\ n+l 1 0n+1 n+1• — — 8 u +~~a + p  ~~u — — ~~~ ~2 m  m+1 m j m  2 m  in-i

a i B n un ~~~~~~~~~~~~~~~~~~~~~ . (3—14 )
2 m m + 1  

~~
m m j m  2 m m - i

Equation (3— 14 ) can be written in matrix form as: 
•

4
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X 1 - . . . o \ /

ur1

\ 

/1
8n+1 u~

+l

1 n+l 1 ~n+i n+i
~~~~~~ 2~~ 2 0 . . . 0 U

2 
0

0 o 0 0 — ~~ . ~~~ X /  \ 
~~~~~ 

/ \~ ~~~~ ~~~~~

~ 8~ 0 0 . . . ~ \ / u~ ~*
\ 

/.
~

. 8~ u~

o . . .  0 0

+ . . 4

0 . . • B~ Y
~
J 

u~ 
/ 

B
~~u~+~ (3- 15)

The two components of the first column vector on the BBS are two boundary
points , and the two components of the last column vector on the BBS are two
boundary points on the initial line. (Note: If we select P = 0, equation
(3—15 ) reduces to the Crank—Nicoison scheme ; if we select P h2/6k, equa-
tion (3—15) reduces to the Douglas scheme.) At this point, we cannot yet
make a choice of P to arrive at a new method. We defer this until after we
have developed the consistency of the method.

3.1.2 Consistency. The conventional definition of consistency states
that an PD approximation to a parabolic equation is consistent if

Truncation error 
~ o as h, k + 0. 
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However , we adopt the definition of consistency in the sense of Keller 12 as
follows:

Let

C0[u;h,kJ be an FD approximation to equation (3—1),

C (u] be the trup operator.

Define

t(u;h,k] — C[u] — C°[u;h,k].

If

lim ¶ [u;h ,k] + 0,
• h,k~~~0

we say that the method is consistent, meaning that the FD operator is con-
sistent with the true operator.

Now we proceed to develop the concept of consistency and to obtain the
“initial local discretization error” (usually called the “truncation error”).

Expanding u~~
’, u~~1, u~~1 upon u~, using the Taylor expansion, and sub—

- 

stituting the results into equation (3—7); we obtain

• ~~~ — (1+ak)u~ - ~~k (~1 - 2u +

.

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + . .

(3—16)

The terms inside the { I of equation (3— 16) — 0 because they satisf y
• equation (3—i). Let E[e] indicate the principal part of the initial local

discretization error. Then, we have

E(e] a O(k2 +

As h,k 0, limr (u;h ,k] + 0; therefore, method (3—7) is consistent.

I
9 j

4
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• . • . n+i n+1 n n n
Similarly, expanding u~~1, Um_l~ 

U~~~~1~ Um-1 upon U
m~ 

using the Taylor

expansion, substituting the results into equation (3—14), and simplifying, we
obtain

1 n+1. n+l I n+1. n+l n+1 I n+1 n+1— — B  u + 8  “u  — — B  u2 in m+i in i n ’  rn 2 m rn—i

n ,2~~~n2 i 3 u
— ~

kaum + k - bsh

in

+ [_ *kak (
~

) :
~~

(
~

)-  b4rk (32
lk
_)~
J

+

+ pbsh 2 (I~ ) + pb4~.k ( 
~~~~ 

) 

~ 
+ Pbs~~ 4~(’~ 

34u) n

3z ar in z 3r
in in

4 i~~
4 \ U

— bs(1—Q)~-- 
( .
~—~

) + . . • . (3— 17)
i2 \~~4/

in

The terms inside the { } of the BBS of equation (3—17) 0 because they
satisf y equation ( 3— i) .  If a and b are range independent, we see that the
terms inside the [ ) and the ( ) of the BBS of equation (3—17) all 0
because the terms inside the ( ) satisfy Urr — alir — buzzr 0 and the
terms inside the ( ) satisfy ui.rr — aurr — buzzrr — 0. Let E[I] indi-
cate the principal part of the initial local discretization error of the im-
plicit scheme of equation (3—14). 

- • 
••

• For p — 0, E[I] O(k3 + ~~2) ,  a Crank—Nicolson error;

p a O(kh2), E[I] — O(k3 + kh4), a Douglas error.

It does not seem likely that a p can be chosen such that E[I} is smaller than
the Douglas error. However, we see that lirn ¶ [u;h ,k] + 0 ; therefore, the

it , k+0
implicit methods of formula (3—15) are consistent for range—independent cgef—
ficients a and b. For the range—dependent case, the terns inside the ( j

10 

~1~~~ 
- -

~
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and the ( ) of th . RU of equatio n (3—17) do not vanish , so that we will ob-
tain a larger E [ I J .  For all a ’ s , we can se that

E (I ]  — d(k 2 • ~~2 )

However, lim T(u;h,k] • 0; therefore, the implicit methods of formula (3—15)
h , ls.0

are consistent also for range—dependent coefficients.

3 . 1 . 3  Stab ility . Tb. general concept of stability stat.. tha t the
difference between th. theoretica l and numerica l solutions remains bounded as
the range ste p n increases , provided th. range incr .at It remain. fixed for

• all space steps m. To f ind out whether a method is stab le or not , we examine
the sat isfaction of th. stability condition; this conditi on can be derived by
means of familiar methods such as Vo~ Neumann ’ s , th . matrix , or the Fourier
series.

We shall firs t derive the stability condition for the explicit methods ,
equation ( 3—7 ) .  We app ly Von Neumann ’s criterion of stability to equation
( 3—7 ) by seeki ng a solution in the form •al •14i)Z , Substituting the solu-
tion into equation ( 3— 7 ) ,  we get

— ~~fl (1 + a k  — 2b s)e~~~’

+ ~~ b~ s [e 
in+l )h 

+ 
i~(m—1)h] , (3— 18)

wtiere ~ — eak .

Simplification of equation (3— 18) give s

~~ l + a ~1 c — 4 s b~
’ sin2 (~in in \2

1 is required to give the stability condition; i.e.,

1 + a k  — 4s b~ sin2 (~ ) i  < 1. (3—19 )

When we use formula (3—7) to solve the example equation , U~ — UZZ, we
arrive at Mitchell’s9 results:

k . 2 I ~uh\— l < l — 4 - j sin i~2 ) c 1 ,
h

• 
. which implies s a for stability.

In general, a(k0,r,z) and b(k0, r ,z) are functions of r and z; this
requires a thorough examination of condition (3—19). In the case
a(k0,r,z) — 0, we need

11

4

• ~~~~~~—~~~- - -- ~~~~~~~~~~~~~~~~~~~~~~ 
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— 1 i 1 — 4sb sin2 (?) 
~ 

+ i • (3—20)

As long as s , bU ‘ 0, the RES inequality of equation (3—20 ) is trivially sat-
isfied. The LH~ gives

I n the case where b~ is purely imaginary, we need

1 — 4sb~ sin2 (
~

) ~ 1. (3—22 )

Condition (3—22 ) does not hold for s > 0, b purely imaginary; therefore ,

formula ( 3—7 ) is not stable for problems with zero coefficient a(k 0, r ,z)
and a purely imaginary b(k0, r ,z) .

When a(k0, r ,z) ~ 0, we need inequality (3— 19) to hold. In our appli-
cations , a(k0,r,z) and b(k0,r,z) are both purely imaginary . Let
a - iap~, b 

a ibR; we then have

I 1 + i [asic 
— 4ab

~ 
sin2 (p)] I ~~. 1. (3—23 )

Obviously, inequality (3 — 23 )  does not hold. To hold the inequality, we must
have

aRk — 4sba sin2 (
~

) 0,

which implies that the condition of stability is

• it2 
— 4 —~~ sin2 (

~
) . (3 24 )

Equation (3—24) holds for h 0, which implies the instability of scheme
(3—7). To overcome this diffi culty, a parameter X can be introduced to
obtain an equivalent equation of scheme (3—7); namely,

— ~ (k0,r ,z) 
— X]v + b(k0,r ,z)v~~

, (3—7)’

where v e4r u. Then , a simi lar inequality of equation (3—19) is
obtained; namely ,

12

_____

- • • ~~~~~~~~~~~~~~~~~~ ~~~~~~~~ — -~ - ~~~~~~~~~~~~~~~~~~~~~~~~ • — —  A
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I (j+)~) + ~ — 4sb1sin2 (~!i)J 
I < 1. (3— 19) ’

The values k, h , and A can be chosen such that equation (3—19)’ is satisfied ;
• therefore , scheme ( 3— 7 ) ’  is conditionally stable.

Now let us turn to the stability of implicit methods , equation (3— 14) .
• When a(k 0, r ,z) — 0, b(k0,r,z) — 1, and ~ — 0; equation (3—14) reduces to

the example equation u~ — ~~~ and our formul a reduces to the Crank—
Nicolson formula. U sing Von Neumann’s method again , we find that the stabil-
ity condition is

. _ 1 < 1 — s ~ t — cos(wh )J < 1  (3—25 )— 1 + s[l — cos(wh)~
We see that condition (3—25 ) is satisfied for s > 0. In fact, s — k/h 2 is
always > 0; therefore , we see that the Crank—Nicolson formula is uncondition-
ally stabl e for solvi pg u~ • u~~.

However , for the equation with complex coefficient s , we cannot take the
unconditional stability for granted when we are using the genera lized Crank—
Nicolson formula; the stability of formula (3—14) needs a thorough investiga-
tion. We shall apply Von Neumann’s method to formula (3—14) to derive a con-
dition and examine the condition in detail.

Define ~ — e~1k eiWh. Substituting ~ into formula (3—14), we get

- 
It ~ (n+1)k 

~~~~~~~~ + Xe~~~~~~ ei~~~ - ~ ~~~~~~~~ ~~~~~~~~

b ank iw (m+1)h onk iwmh It csnk iw(m-1)h•~~~se e +Y e e +j se e •

Simplif ying, we find that

~~
‘ + ~ [2 cos (wh )]

b , (3—26)
x — -~~ s [2 cos(wh))

which gives the condition

1 — bs (1 — cos(wh )) — — ak2 < 1 .  (3—27)
1 + be [i — cos (wh)] + ak 

—

Where a(k1,,r,z), b(k0r,z) > 0, inequality (3—27) is satisfied for all
s 0; therefore , the unconditional stability obtain.. In our applications ,
a(k0,r,a) and b(k 0, r , z) are both purely imaginary. Specificall y, we have

13
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1 — — ~~~~~~~~ s [i — cos (wh)J — k~~~~O [n
2(r~z) — i]

0 11.  (3—28 )

i +~~~~~~
-. s r l — cos (wh)j ~~~~~~~~~~~~ ~~~~~~~ —

Equation (3—28 ) can be expressed in the short form

1, (3—29 )

where

kk
X ~~~~— [i — cos (~th)] + _~2 [n

2 r,z) — i]

Prom equation (3—29) we see that

1 — i X  -

~. + iX always — I for all real X

Theref ore , the PD scheme, equation (3—14), is stable when it is applied to
solve our parabolic wave equation. 

- -

3.1.4 2~~.!~~~ence. We have developed the consistency and the stabil—
ity of both explicit and implicit FD schemes, formulas (3—7) and (3—14). Now
we want to show that our PD schemes are convergent. Let

“t.s.” stand for the theoretical solution of equation (3—1),
“n.s.” stand for the numerical solution of equation (3—1),
“f.s.” stand for the finite-difference solution of equation (3—1).

The norm inequality shows that

I It.s. — n.s.II It.s. — f.s.H + IIf.s. —

Note that by applying the consistency to the first norm of the BBS and by
applying the stability wi th the error control to the second norm of the BBS,
we have established the convergence .

- -.- -

3.1.5 ~iscretization Errors. As a result of their consistency, the
local initial discretization errors of explicit and implicit PD methods are
given by formulas (3—16) and (3—17), whose principal pa rts possess the fol-
lowing expressions:

E(el a - 
~~~~ bkh

2 (E
~~
): — O(k2+kh2). (3—30)

14
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In the range—independent case, 
-

- - 4~ 
bkh2 (1_~ )(~

_
~) 

- 0 (k
3 

+ cl_0 kh2).

For the ran ge— dependent case ,

2 / \n 2 1 4 \n
E[I] a — ~~~— an (~~

) — b~~— ‘—~*~—U a 0 (It2 + ( l—p )kh 2
~ . a \3r/~ 12 \az / m (3— 32)

3 • 2 ORDIN&RY DIFFERE NTIAL EQUATIONS APPROACH

3.2.1 .Formulation

Consider - -

UT 
a(k0,r,z)u + b(k ,r ,z)u . (3—33)

Discretize the u~~ portion by a second order central difference:

- u~ — a(k
0,r,z)u + k2 (u~~1 — 2U

m 
+ u~~1

). (3—34)

— amu + —
~~~ (u~~1 

— 2U + u
1

) . (3—35)

74~\ 7a
i 
- 24 0 . . .  0 \

\ (~ 
\. 
f

~~o ~~

—
~~ a _2_a ~a . . • ~ U 0
h2 2 h2 h2

~j . . : 

~~ ~m~~~~~~~~~~~~ m 
~~~

u
~~L36

~0 and Um+1 are sur f ace and bottom boundary points.

1.5
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--

Decompose the above matrix f orm int o

du 2b1
1 2  0 • . .  0 U

1

du 2b2- 
0 a2 2  . . .  0 u

2

a I

dum 2bm
— 0 ... a udr m 2  in

b b
0 —4 o . . .  a a u1It h 0

0 ~~~~~~~~~. . .  0 0 U
2 

0 
•

+ S .

It -rn-i
2h

b 
• 

b
O . . • 0 U

(3— 37)
which is in the form

u’ — Au + g(r ,z ,u )  ( 3—38)

3.2.2 Methods Under Consideration (NLMS and U(S)

The above f or m (equation (3—38 )) is the equation to which the NL MS meth—
ods are applicable. To simplify the application , we app ly an NLI4—l— step pre-
dictor and a corrector with a built — in variable step size.

As a predictor , the solution is

16
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~
n+l eAhufl 

+ It E(~~
)
~~(I— e~~)) gtl(r ,z,Un). (3—39)

As a corrector , the solution is

a + It [(~~)
_
2] I [_I + (I_Ah)e~~] 

gn

+ (I + Ah - eAh) g
n+l (r ,z ,U~~~

’
)j  . (3—40)

A PC3 procedure is built—in; i.e., the procedure predicts and corrects at
most three times .

NLNS methods are desi gned to be effective in solving equations whose &
is either slowly varying in r or is a low order polynomial in r and whose
eigenvalues of A have negative real parts and differ greatly in magnitude.

• ! The selection of step— size It can be made approximately by

It < 1,

where •~~ has been defined in formula (3—40).

When g is a constant , any h can sat isf y the above inequality; therefore ,
NLMS methods allow the use of a lar ge step size. In this case , an accurat e
computation of e~~’ will give accurate results with fas t speed. Therefore ,
NLMS methods have an excellent application to underwater acoustic .range—
independent problems with plane parallel boundary conditions where the field

• vanishes on both boundaries.

3.2.3 Stability, Consistency, and Convergence

The theory with respect to consistency , stab ility , and converg ence has
been well developed.’3 We s~~~arize the theory below.

NLMS methods take the expression

- i—0 
~~~ i eA

~~
1( i) un+i 

a h 
i—0 
•~1(Ah)gfl~~. (3—41)

The characteristic polynomial of NLNS methods is

XAh k
p (X ,~ ) — e Z a.C i 

. (3—42 )
i—O ~

Since we select k 1 , akai , and 
~k—1 

—1, the root of Q(X ,C) is 1 and
simple; therefore , the NLMS methods are stable.

The consistency condition is self—contained because NLMS methods are
formulated to yield consistency . Then, by the convergence theorem, stabil-
ity + consisten cy • convergence .

17
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We also tried L1~ methods , which can be simply obtained from NLMS meth-
ods by letting II Al I • 0 so that the theory is automatically app licable.

• The predictor we used is

• un+1 Un + hfn(r , z ,un) , (3.43)

which is known as the Adams—Bashforth method and also carries the name Euler
method.

The corrector we used is

+ ~~ 
[
~n + fn+1(r ,z,U

n+i
)] (3_44)

which is known as the Adams—Moulton method or the trapezoidal rule. f here
is the BBS of equati on (3—36 ) .

3.2.4 Discret ization Errors

The initial local discretization errors of LMS and NLMS methods have
been worked out in detail ~-3 ’ t4 . The error terms are listed below in
relation to the methods we ha”e applied.

E(A3) ~ Adams—Bashforth error

~~ [_ i P+~ ~~ (~
,) ~~5] 

O( 1P2 ) ( 3-45 )

E(AZ4] — Adams—Moulton error

a h~
’2 (p+2) 

~~~ [( .i)P+l 
i_

’
~ (;:~) ds] 

- — O(h~~
2) (3—46)

E(NLMS ] Nonline ar multistep error

(constan t) fl g~~~~~~ r ,u~ It~~
2 

— O(h~~
2), (3—47 )

where p order of the method ,

t — t

It

3.2.5 Variable Step—Size Technique and Error Controls

Definitions: PCin stands for “predict—and—correct m times,”

c is the us er required tolerance .

H I 
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A variable step—size employs the PCm procedure to satisfy the user’s
required tolerance .

Applying a predictor (exp licit method), one can use

Un+k 
‘i~~~ — [_ 

~~~~~~~~~~~~~~~~~ 
Z 

~k~
(Ah)&fl+I] 

, (3—48)

where Un+k is expressed in t erms of previous ~~~~~ values.

• 

If a corrector ( implicit method ) is used , one must have

U
fl+k ~~~~~~ [— a h(k

~
i)u + h  E 4 ki(Ah)g fl+~ ‘

k i~O
whi ch is of the form

u G (u ) ,  ( 3—50)

where

u

The successive iterative form gives

~(v +I) — G(u~ ’~ ) (3— 51)

for any initial vector

Let G(u) be defined for I I  uj~ < ~~~, and let there exist a constant K
such that 0 <  K <  1. Then G(u) satisfies the condition

I I G(u*) — G(u)I l < K l I u * — u ll . (3—52 )

Using the definition of G(u) — formula (3—49) — and the fact that g(r,z,u)
satisfies the Lipschitz condition with a Lipschitz constant L, one can see
that equation (3—52) is satisfied by

- hil, (Ah)I fkk L .  (3—53)

For the iterative procedure , equation (3—51 ) ,  to conver ge fo r ar bit r ary
K is required to be less than 1:

K <  1~~ 
— L< 1 . (3—54)

19
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This is the condition of the corrector ’s convergence. Conventionally, we
select csk 1 for computational convenience.

Now we describe how we develop the variable step—size technique. If a
predictor is accurate , only one correction is needed. In our implementation
we limit m < 3; thus , we have a PC3 procedure , which can be described by
the following diagram. 

______________

® by predictor 0 —.- rn

-® 

~ 
m + m ___  

S 

~~ 

~~~~~
—h HD

(m)2 u by corrector
n+1

(m) (m-1)i NO (m) (rn-i)
IIu,~.1—u,~ 1 1k? u n+1~~

Un+~ 
1

YES

E

- , the latest ~~~~ meets the corrector’s convergence; therefore, U1~~~
is the solution. When the corrector’s convergence is met, we double the step
size and go to © to continue the solution. When the third try fails to
meet the convergence, we halve the step size and go to ® to restart the
solution. Since there exists an It that leads to the corrector ’s convergence,
this procedure is a convergent procedure; however, when h is extremely small
such that t+h It in the machine, the program will provide a message and halt
the computation.

When it is less than the user required tolerance , the accuracy is con—
trolled by examining the norm between two consecutive computations.

20
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4. A NUME RI CAL TREATME NT OF BOUNDARIES

Consider the solution of the parabolic wave equation of the form

Ur 
— a(k0,r,z)u + b (k0 , r ,z)u

~~ • (4—1)

• Assume that the numerical methods (PD and ODE) are to be used to solve the
problem in the rectangular region:

SURFACE BOUNDARY

INITIAL
VALUES 

— 
BOTTOM BOUNDARY

~~ iOUNDARY
POINT

Our methods require the initial conditions and two boundary points
bef ore we can proceed to find the solution at the next range line. With
this input information, we can classify the boundary descriptions for three
different cases, and discuss the trea ent of each case separately .

We further assume that the boundary condition is a Neumann condition
such that — 0, where p is the solution of V2p + k2p 0.

CASE 1 : FLAT BOTTOM BOUNDARY

En this case,

- 
BOTTOM BOUNDARY

21
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pN
a O

az co5a + 3D s
~~~~~

o
~~~~~~~~

O (4—2)

nfl
fl U rn

U rn
n+1

n Um+1
Um+1

Since p a H~~~(kr)u, ~~ 
0 • u 0.

n+i 
— 

n+1
n+1 U~~~~1 

U~1 n+1 11+1
To find u~,1, we see that 0; therefore, u~~l u~

CASE 2: SLOPING BOTTOM (SHALLOW TO DEEP WATER)

iL ~,fl~”l

- 

-
~m + ~~~ t~

By trigonometry , the distance between u~~
1 and ~~~ is

h + 6z h + k • tgci • (4—3)

22

_ _ _ _ _ _ _  ~ • •- • - • - - - - - • -••- - •---• -— ~~~~~~~~~~~ --~~~~~~ - -- •~~~~~~~~~~—~~~~
-

~~~~ -—--



__________ ~~~~~~~~~~~~~~~ ‘

TR 5929

n+1We find u~11 as follows:

~~~coscL —~~~~sincZ .O a t u a u ~ ’~ . (4—4)

Also at u u~~~ , u must sat isf y parabolic equation (4— 1) ;  therefore ,
equation (4—4) becomes

• H~~~(kr)u cosO~ 
— [(H~~

)(k )) + H(1)(kr)u
] 

sina — 0

And therefore,

H~~~(kr)cos~u 
— 

[H
(1)
(kr)] sinau — H ~(kr)sina(au+bu ) 0.

Simplif ying, we obtain

(1)

- 
COt ~ U 

~ [:~~::‘~ 
+ 
a] ~ 

u a 0, (4 5)

which is a second—order scalar ODE. -

“ ‘n+1n+1 . i a~~Knowing ~5z, Urn , we can fi nd from

n+1 n+1u — u  I ~~n+1rn-I (3ut
__________  a (4 6)

Then we can use numerical methods to solve equation (4 5). We make the fol—
towing transformation, using the ODE package already incorporated in the sys-
tem. Let

cot~1• ?~ a —

b

• 
I(H~~~(kr)) 1 I

— 

L H(1)(k) 
+ 
a] /b

23
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We have

+ p1
(z)-~~ + p2 (~ )~ 0

civ d2
~~ —i — p1(z)v — p2(z)u;dz

therefore,

/u’\ / 0 1 \ iu
I ~ —I I I

—p 1(z))

If pj(z) and p2 (z) are constants in a, we can solve equation (4—5)
exactly; i.e.,

2 
_ _ _ _ _ _ _ _ _ _ _S + p

1
5 + p

2 0 4 — 
2

The solution is

(—~l 1 r2 
• 

~~~~~~~~~ 1 12
u a c1e\r 

+ 
I v’~’i 

— 

+ c2e\r 
— 

~~~ 
,~JP1 

— 4
~2,/z (4—7)

If we use u(z0) a u0, u’(z0) u’0 , we can determine c1,
n+1

c2 exactly. Then the solution u can be calculated exactly, and Um~j 
can be

solved.

Once ~~~ is found, we can proceed if we use proper care. Note that

if the distance between u~~
1 and u~~~ is not 2(~z) ,  we cannot proceed with

the present method because the depth partition at this time level is not uni-
form. A special treatment is needed at some specific advanced time levels. •

n+l n+1 fl+1 . .To handle this, we label u~~1 as u~~2 and define u~~1 as the mid—point

between u~~
’ and u~~~. We determine u~~ in such a way that the

24
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distance between ~~~ and ~~~ is 2(6z). This treatment ensures a uniform

partition in the depth direction. The u~~ can be found the same way by

solving equation (4—5).

A question arises: How far can we proceed in determining u~~~? To ease

the progra~ning requirements and to maintain accuracy, we determine Ar by

a tg~ • Ar ~ • cota.

When we have proceeded Ar distance in range, it is time to determine u~~~.

CASE 3: SLOPING BOTTOM (DEEP TO SHALLOW WATER)

n+l
U rn

m

The treatment of case 2 can be applied to case 3. The only differences
are a and 6z.

25
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5. EEPERIMENTAL NU~~RI CAL RESULTS

To implement these numerical method s , experimental computer progr ams
• have been developed in ANSI FORTRAN language. The computations were carried

Out on the Acoustic and Environmental Research Division’s (Code 312) PDP
11/70 computer. Since these programs are not yet finalized, we will not
describe them in this report. A separate document will be issued to describe
the computer model in detail.

A number of parabolic problems whose solutions are known were used to
• test our numerical methods; the numerical results show a reasonable accuracy.

Three of the test problems are included in this report to demonstrate the va-
lidity of the methods. Note that problem 1 (used to test accuracy) does
not have any physical significance.

We generally classify underwater acoustic wave propagation problems in
two categories: range—independent problems and range—dependent problems.
Range—independent problems have coefficients and plane parallel boundary
conditions independent of range. Range—dependent problems include either
irregular bottom boundaries or plane parallel boundaries with coefficients
and/or boundary conditions dependent on range.

PROBLEM 1: ACCURACY TEST

Equation: u~ (r2—z)u + ~~~

Region of consideration:

u s •
_ fI

z

Conditions: u0 — u(o ,z) a 1

u(r,o ) 1

u(r,s) — ~—1Tr

• Exact solution: u ~~~~~~

26 
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Numerical Solutions :

Results are tabulated at a range of 1 mile.

- 
Depth Implicit Exact

(mile) ODE PD Solution
0.2 0.81884402 0.81880862 0.81873077

0.5 0. 60672331 0.6066355 1 0.60653067

0.8 0.44953302 0.44939151 0.44932896

time 1m22s 1m17s

A var iable step—size technique is used for the ODE method; the user re-
quired tolerance is of the order h 4. The PD method does not have the
variable step—size capability; it uses the optimal step—size (h’ O.OOl) deter-
mined by the ODE program.

PROBLEM 2: A SHALLOW WATER WAVE PROPAGATION IN A RE CTANGULAR REGION WITH A
RIGID BOTTOM15

Equation:

S iko 2 i. 2irfu —(n—l )u+—u ; k ~~~— .r 2 2k0 zz a c0

Region of consideration:

$50 URCE
- 

_

BOTTOM

Input parameters and initial boimdary conditions:

• Initial field values: supplied by shallow water model3

Surface condition: u(r , 0) — 0

lottos boundary condition: u~q 0

27 
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Sour ce depth: 32 ft

Initial sound speed — c0 4950 f t /sec

Bottom depth — 64 ft

Frequency — 25 Hz

Sound speed profile:

a (ft) SSP (f t / sec)

0 4950

64 5000

>64 90000

Numerical soluti ons : Probl~ e star ted at range 32 ft and terminated at
range ~ 1313 ft. Three solutions were obtained; a

- normal mode’5, a variable step-size ODE, and an
explicit PD. The PD program used a step— size 10 times
smaller than that used for ODE . The FD solution was
obtained using double—precision aritlinetic.

Graphical outputs: Three numerical solutions are plotted on the graph
below: depth ( f t )  versus propagation loss (dB) .

PSOPAGATION LOSS (dl)

o65 115 315 215

10

20

30

4C

so -
PflQI~~4CY ’ 25 Hi
SCI*CI 0 11I • 32 It
IOTTOM OSPTh’64 1,
IOIIZONTAL UNGS ‘1312 It

60 • NGS~~~L MOOSo PARA$OUC (PD)
* PMA$OLIC COOS)
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PROBLEM 3: SLOPING BOTTOM (SHALLOW TO DEEP WATER ENVIRONME NT)’6

Probl em
Background: The solution for the acoustic field in a homogeneous medium

• bounded by a wedge can be obtained by the method of images.
The solution in mathematical form and a computer program
(WEDGE) to evaluate the exact solution are described in
reference 16. A homogeneousmedium, characterized by a sound speed
c0, bounded by a horizontal surface and sloping bottom that
makes an angle of 45 degrees with the horizontal surface is
described below under ~~~ion of consideration.

Equation: The parabolic equation represents the wave propagation in the
range direction after the parabolic decomposition is found to be

1.u ~~~~~~~~~r 2k0 zz

Region of consideration:

_ _ _ _ _ _ _ _  ~.—1OO ft- .’j ro RANGE\~i T
~~~ ~~ 50ft ~~~~~~~~~~~~~~~~~~\ SOURCE

100

~~~~~~~~~~~~~~~~~~~~~~~~~~~~
OTTOM

A point source is placed 50 ft below the surface, and the receiver is located
100 ft from the source. The depth of the wedge at the source is 100 f t , the
frequency equals 80 Hz , and c0 equals 5000 ft/sec. The exact solution
above indicates the solution of the acoustic wave equation. We attempt to
find the parabolic equation soluti on u in the shaded region , and then we
attempt to compare H~

1
~(kr)u against the acoustic wave equation

solution computed by the WEDGE program.

29
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Conditions: Initial u(r0,z) values are supplied by the WEDGE program.

u(r ,o) a 0

u(r ,botto~ ) — uij 0.

Exact solutions:

The exact solution of the acoustic wave equation is obtained from the
WEDGE program.

The exac t solution of the parabolic equation is not known.

Numerical solutions :

Numerical solutions are produced by the variable step—size ODE method.
The Neumann bottom condition was treated by formula (4—5). Solutions of the

parabolic equation are multiplied by H~
1)(kr) to give an approximate

solution of the acoustic wave equation . The grap h below is presented in
dB—scale, plotting PL(dB) versus DEPTH (ft).

0.0c.

PHI’ 45.0 DEGREES
FREQUENCY’BO.O Hz
SOUND SPEED’ 5000.0 ft/s.c

—‘ 60.00 SOURCE DEPTH ’ 50.0 ft
BOTTOM DE PTH AT SOURCE’lOO.O ft
HORIZONTA L RANGE’ .019 n m ’  120 ft

80 0C 
• — ELLIPT IC

p 
a PARABOLIC (ODE)

1000( I I

O.CO 3000 60.00 90.00 120.00 130.00 180.00 210.00 240.00
DEPTH (PT)

30 
_ -

- -~~- • • _ . -. •-.—~~~~—



— 
—

TB- 5929

Note that we do not expect the solution of the parabolic equation, multiplied

by an appropriate U~,~~(kr), to agree closely with the solution of the acous-

tic wave equation since the parabolic solution is just an approximation of

- 
the convolution. The introduction of an additional boundary point and the
approximation of a boundary condition by a combination of normal derivative
and the parabolic equation, which results in a second order ODE of the tnt—

C 
tial value problem, may produce less accurate results.

a
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6. CONCLUSIONS

The above ODE and PD methods were developed in order to solve the para-
bolic wave equation with arbitrary bottom and arbitrary boundary conditions ,
which the existing split—step algorithm cannot handle. These methods have
been shown to be general purpose and to provide the desired accuracy.

At this st~sge of their development, both ODE and explicit PD methods
require muall range step—size for accuracy . Implicit PD methods have favor-
able stability , but the explicit PD methods do not have this property. The
implicit PD methods are faster than the variable step— size ODE methods and
are equally accurate.

A categorization of the different environments and various boundary con-
ditions yields the fo llowing four cases:

CASE 1: PLANE PARALLEL CONDITIONS WITH u 0 at the BOTTOM

SURFACE uzO

BOTTOM

CASE 2: PLANE PARALLEL CONDITIONS WITH u ~ 0 , ARB ITRARY AT TNE BOTTOM

SURFACE u:0

u*0 ARBITRARY
BOTTO M

32
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CASE 3: PLANE PARALLEL CONDITIONS WITH UN - 0 AT THE BOTTOM

SURFACE u O

~ 0
BOTTOM

CASE 4: IRRE GULAR BOTTOM WITH NEUMANN BOUNDARY CONDITION

SURFACE u~ 0

£
TOjj

WAp

.

SURFACE ua O

WA VA
D E E P  TO SHALLOW~~~~~~”

WATER ~~~~—‘

SURFACE u~ 0

• IRREGULAR BOTTOM
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The app licability of these methods is s arized in the following table,
where NA stands for “Not Appl icabl e”

~~THOD PD_______________ SPLIT-STEP
CASE ODE E~~LICIT I~~LICIT (FPT)

1 X X X X

2 X X X NA

3 X X NA NA

4 X X NA NA

It is evident that most general purpose algorithms used to solve para-
bolic wave equations are ODE or explicit PD methods. The explicit FD methods
are restricted to the use of small step—size in order to achieve reasonable
accuracy; they are inferior to ODE methods. In addition, the built—in cor-
rector required by explicit FD methods is very costly in speed and memory
capacity.
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